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7 Abstract

8  Atmospheric vapor pressure deficit (VPD) controls local plant physiology and global vegetation productivity.

9 However, at ecologically crucial intermediate spatial scales, the processes controlling VPD variability and the role
10 of this variability in forest bryophyte community assembly are little known.
11  To disentangle processes controlling landscape-scale VPD variability and explore VVPD effects on bryophyte
12 community composition and richness, we recorded bryophyte communities and simultaneously measured forest
13 microclimate air temperature and relative humidity across topographically diverse landscape representing
14 bryophyte diversity hotspot in temperate Europe. Based on VVPD importance for plant physiology, we hypothesize
15 that VPD can be an important also for bryophyte community assembly and that VVPD variability will be jointly
16 driven by saturated and actual vapor pressure across the topographically diverse landscape with contrasting forest
17  types and steep microclimatic gradients.
18  Contrary to our expectation, VPD variability in the forest understory was dictated by temperature-driven
19  differences in saturated vapor pressure, while actual vapor pressure was surprisingly constant across the landscape.
20  Gradients in bryophyte community composition and species richness followed closely the VPD variability. While
21 mesic forest bryophytes occurred along the whole VVPD gradient, azonally occurring and rare species preferred
22 sites with low VPD. In result, low VPD sites represent species-rich microrefugia within the landscape and host
23 regionally abundant mesic bryophytes simultaneously with rare species near their distributional range limits.
24 Our results showed that VVPD variability at ecologically crucial landscape scales is controlled by saturated vapor
25  pressure and consequently by the maximum air temperature. Future climate warming will thus increase
26 evaporative stress and reshuffle VVPD-sensitive forest bryophyte communities even in topographically diverse
27 landscapes, which are traditionally considered as microclimatic refugia. Azonally occurring rare bryophyte species
28  concentrated in low VPD sites will be especially vulnerable to the future changes in atmospheric VPD.

29 1. Introduction

30  Atmospheric vapor pressure deficit (VPD) is a key driver of plant functioning in terrestrial ecosystems (Grossiord
31 et al., 2020; Ruehr et al., 2014). Higher VPD means higher evaporative stress for plants, which leads to reduced
32 photosynthesis in the short term and drought-induced mortality in the long term (McDowell et al., 2008; Fu et al.,
33 2022). Ongoing climate changes further exacerbate this evaporative stress because higher temperatures lead to an

34 exponential increase in VPD (Lawrence, 2005; Grossiord et al., 2020). Increasing atmospheric VPD already limits
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35 global vegetation productivity (Yuan et al., 2019; Lopez et al., 2021; Lu et al., 2022) and triggers large-scale forest
36 diebacks (Breshears et al., 2013; Eamus et al., 2013; Williams et al., 2013).

37 In contrast to VPD effects on local plant physiology and global vegetation functioning, the understanding of
38  the processes that control landscape-scale VPD variability and the effects of this variability on plant community
39  assembly is limited (Novick et al., 2024). Yet this knowledge is crucial for more realistic predictions of climate
40  change impacts on vegetation and the identification of microclimatic refugia (Ashcroft and Gollan, 2013; Davis et
41 al., 2019; Finocchiaro et al., 2024; Ogée et al., 2024). VPD variability across space reflects the complex interplay
42 between spatial patterns in saturated and actual vapor pressures. While saturated vapor pressure (Psz) is controlled
43 solely by air temperature, actual vapor pressure (Pair) is influenced by many processes operating at different spatial
44 scales ranging from regional atmospheric circulation and precipitation to local evaporation from soil and water
45 surfaces and plant transpiration (Campbell and Norman, 1998). Yet how these contrasting processes integrate into
46 the resulting VPD variability over the landscape is still unknown.

47 A deeper understanding of the mechanisms behind landscape-scale VPD variability is particularly important for
48  climate change biology. Scientists predict a temperature increase of up to 4.4 °C by 2100 (IPCC, 2023), which
49  would lead to a more than 40 % increase in VVPD for the same atmospheric water vapor content (Will et al., 2013).
50 These changes can also modify VPD variability over the landscape and therefore potentially change
51  the distribution of individual species and alter the composition of plant communities. However, VPD effects
52 on plant distribution and community assembly over the landscape are not sufficiently known.

53 Among plants, bryophytes are exceptionally sensitive to evaporative stress because they lack roots, lignified
54  water-conducting system, water storage tissues, and active stomata and have a large surface area in proportion to
55 biomass (Rice et al., 2001, Goffinet and Shaw, 2009). Bryophytes transport water passively, mainly through
56 external capillary spaces between tiny parts of their body (Schofield, 1981), and their internal water content is thus
57  a function of the water availability in the surrounding environment (Vanderpoorten and Goffinet, 2009). When
58  this water evaporates, bryophytes can survive in a desiccated state (Proctor, 2000, 2001). Despite this unique
59 bryophyte ability to tolerate desiccation, bryophyte assemblages are potentially highly sensitive to evaporative
60  stress, because desiccation tolerance widely differs among bryophyte species (Hinshiri and Proctor, 1971; Wagner
61  and Titus, 1984, Oliver et al., 2000; Proctor, Ligrone, et al., 2007; Proctor, Oliver, et al., 2007). Yet surprisingly
62 little is known about the VVPD effect on bryophyte assemblages in temperate forests (Fenton and Frego, 2005).

63 Here we combine detailed in-situ forest microclimate measurements with simultaneous bryophyte inventories
64  to provide this missing knowledge. Specifically, we quantified VPD variability over the topographically diverse
65 landscape, identified which processes drive this variability, and explored how landscape-scale VVPD variability

66  affects bryophyte community composition and species richness in temperate forests.

67 2. Material and methods
68 2.1 Study area

69 We recorded bryophytes and measured microclimate in the Bohemian Switzerland National Park in the Czech
70 Republic (Fig. 1). The rugged terrain of this sandstone landscape creates a fine-scale mosaic of contrasting habitats
71 with steep microclimatic gradients over short distances (Wild et al., 2013). The elevation within the national park
72 ranges from 125 to 619 m and the mean elevation is 340 m. According to the data from the Tokan weather station
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73 (Fig. 1), the mean annual air temperature during the 2011-2019 period was 8.3 °C, and the mean annual
74 precipitation was 765 mm.

75
4’}'
. research plots g
A Tokar weather station
-
76

77 Figure 1: We measured microclimate and simultaneously recorded bryophyte species composition at 38 permanent
78 research plots within the Bohemian Switzerland National Park in Central Europe (a). This forested area has rugged
79 terrain creating steep environmental gradients over short distances (b). The location of the 38 research plots and
80 the Tokafi weather station within the area of the national park (c).

81 Most of the Bohemian Switzerland is covered with coniferous forests. Historically planted Norway spruce (Picea
82 abies) predominates in the valleys and on the plateaus, while patches of semi-natural forests are dominated either
83 by Scots pine (Pinus sylvestris) on the upper slopes and rocky ridges or by European beech (Fagus sylvatica) on
84  more mesic sites.

85 The nutrient-poor and strongly acidic soils result in a relatively low diversity of vascular plants, which contrasts
86  with the rich bryophyte flora (Hértel et al., 2007). With more than 300 bryophyte species, the Bohemian
87 Switzerland is a hotspot of bryophyte diversity in Central Europe (Markova, 2008).

88 The bryophyte flora of the Bohemian Switzerland is dominated by species like Tetraphis pellucida, Bazzania
89  trilobata, and Dicranum scoparium. These dominant floristic elements are enriched by azonal occurrences of
90 (sub)alpine or (sub)montane (e.g., Hygrobiella laxifolia, Geocalyx graveolens, Anastrophyllum michauxii), boreal
91  (e.g., Dicranum majus, Rhytidiadelphus subpinnatus) and (sub)oceanic (e.g., Tetrodontium brownianum,
92 Plagiothecium undulatum) species (Hértel et al., 2007; Markova, 2008).

93 2.2 Field data collection

94  We recorded bryophyte species composition and measured microclimate on 38 permanent plots within

95 the Bohemian Switzerland National Park (Fig. 1). These plots were selected through stratified-random sampling

96  to capture the main microclimatic gradients within the core zone of the national park. Within each permanent plot,

97  we installed HOBO U23 ProV2 (Onset, USA) microclimatic datalogger protected by a white radiation shield with

98  good ventilation and placed at 1.5 m height on the north side of a tree nearest to the plot center. Each HOBO

99  datalogger measured air temperature (resolution 0.02 °C, accuracy =+ 0.21 °C) and relative humidity (resolution
100  0.05 %, accuracy + 2.5 %) every 30 minutes from 1 June to 31 August 2022.
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101 Simultaneously with microclimate measurements, we recorded the presence of all bryophyte species in each

102 research plot following the nomenclature of the Czech national checklist (Kucera et al., 2012). We deliberately

103 sampled bryophytes in a relatively small area (3.14 m?) to reduce the possible effects of within-plot environmental
104  heterogeneity (Rambo and Muir, 1998; Vanderpoorten and Engels, 2002; Schmalholz and Hylander, 2011).

105 2.3 Microclimate data processing

106 First, we checked the microclimatic time series using visual inspection and standard automated procedures

107 implemented in the myClim R package (Man et al., 2023). Using checked air temperature and relative humidity

108  data, we calculated the saturated vapor pressure (Psx) following the updated Buck formula (Buck, 1981, 1996):

109 Py = (1.003 4+ 4.18 x 1076 X 101 kPa) X 0.61115 x ((23:036-/333.7)«(t/(27982 + 1))
110  where tis air temperature [°C].

111 Then, we calculated the actual vapor pressure (Pair) using the Tetens’s formula (Tetens, 1930):

112 Pair = Psqr X (;Tho) )

113 where rh is relative humidity [%].
114 Finally, we calculated atmospheric VPD as the difference between Psy and Pair (Jones, 2014).

115 From the resulting time series, we extracted plot-specific daily maximum VPD and Psz; and P values at the time

116 of daily maximum VPD (Tab. 1).

117 Table 1: Summary statistics of microclimatic variables measured in 38 forest research plots during summer (June-
118 August 2022). Vapor pressure deficit is the average daily maximum, while saturated and actual vapor pressure are

119 averages of these variables at the time of maximum daily VPD.

Abbreviation Mean across all plots

Range of plot means

Saturated vapor pressure Psat 4.00 kPa 2.61-5.02 kPa
Actual vapor pressure Pair 1.90 kPa 1.75-2.08 kPa
Vapor pressure deficit VPD 2.09 kPa 0.62-3.17 kPa

120 2.4 Data analysis

121 2.4.1 Spatial VPD variability

122 To quantify spatial variability in daily VPD, Psy and Pair, we calculated the standard deviation (SD) of the daily

123 maximum VPD and corresponding Ps.: and Pair values and averaged these daily SD values over the study period as

124 an overall measure of spatial variability for each microclimatic variable.

125 To disentangle the contribution of Psx and P.ir to the VPD variability, we performed variation partitioning

126 (Legendre, 2008) based on a multiple linear regression model with the average daily maximum VPD as the

127 response variable and the average daily values of Psxxand Par at the time of daily maximum VPD as the predictors.

128  2.4.2 Bryophyte communities

129  We explored the relationship between atmospheric VPD and bryophyte communities through three steps. First, we

130 quantified the VPD link to species richness, then, we explored the VPD, Ps, and P relationship to main gradients

131 in community composition and finally, we directly tested VPD effects on species composition.
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132 To quantify the relationship between the VPD and species richness expressed as a number of bryophyte species
133 recorded in the plot, we used a generalized additive model (GAM) fitted with the R package mgcv 1.9.1 (Wood,
134 2011). We used GAM with Poisson distribution, log link function, and smooth terms fitted by thin plate regression
135  splines without null space penalization and smoothing parameter estimation using restricted maximum likelihood.
136  To explore the main gradients in the bryophyte community composition, we used non-metric multidimensional
137  scaling (NMDS) based on the Serensen dissimilarity. We calculated two-dimensional NMDS with the weak
138 treatment of ties, a maximum of 500 random starts, and 999 iterations in each NMDS run using metaMDS function
139 from the vegan R package version 2.6-4 (Oksanen et al., 2022). To maximize variance along the first ordination
140 axis, we centered and rotated the resulting two-dimensional configuration with principal component analysis.
141 To explore whether main compositional gradients correlate with microclimate variables, we passively projected
142 gradients in VPD, Psyx and P into the NMDS ordination space and tested the significance of the fit with 999
143 random permutations using the envfit function from vegan R package (Oksanen et al., 2022). Finally, we projected
144 bryophyte species richness gradients into the NMDS ordination space using a generalized additive model fitted
145  through ordisurf function from vegan R package (Oksanen et al., 2022).

146  Todirectly test the effect of the average daily maximum VPD on bryophyte species composition, we used distance-
147 based redundancy analysis (db-RDA) (McArdle and Anderson, 2001). As a response variable, we used two
148  community dissimilarity matrices, each reflecting different aspects of community composition. First, we used
149  a community dissimilarity matrix based on the Serensen index, which expresses differences in species composition
150 including differences in species richness. Second, we used the Simpson index, which expresses species turnover
151 independent of the species richness differences (Lennon et al., 2001). To assess the statistical significance of the
152 VPD effect, we used a permutation test with 999 random permutations (Legendre et al., 2011).

153 We used R version 4.4.0 (R Core Team 2024) for complete data analysis and figure preparation. For the colour
154  scheme of Fig. 2 and Fig. 4, we used the R package scico 1.5.0 (Pedersen and Crameri, 2023).

155 3. Results
156 3.1 VPD variability

157  VPD in the forest understory was highly variable across the landscape, Fig. 2. The VPD values measured every
158 30 minutes during summer months ranged from 0 kPa to 8.83 kPa with an overall mean of 0.85 kPa. The overall
159  average daily maximum VPD was 2.09 kPa and ranged from 0.62 to 3.17 kPa among the plots (Tab. 1
160  and Appendix A, Fig. Al a Fig. A2).
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162 Figure 2: Spatial variability of VPD and its components — saturated and actual atmospheric vapor pressures. Each data
163 point shows the standard deviation of the daily values simultaneously measured at 38 forest plots, and density plots
164 summarize this spatial variability over the summer season. The individual data points were slightly jittered for better
165 visibility.

166 The spatial variability of Psy (average daily SD =0.55 kPa) was almost four times higher than the spatial
167  variability of P (SD = 0.14 kPa). Saturated vapor pressure was also the dominant driver of the VVPD variability

168 across the landscape (Fig. 3) because Psz explained 97 % of VVPD variability, while P, explained only 3 %.
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170 Figure 3: Atmospheric vapor pressure deficit (VPD) at 38 forest plots sampled over topographically diverse landscape
171 was dictated by temperature-dependent saturated vapor pressure (b), while actual vapor pressure was not related to
172 local VPD (a). Each dot represents the average daily maximum VPD and the corresponding average saturated and
173 actual vapor pressure during the summer season.

174 3.2 Bryophyte communities

175 In total, we recorded 39 bryophyte species: 14 liverworts and 25 mosses (Appendix C, Tab. C1). The average
176 number of species per plot was 8, minimum 1 and maximum 21. The most frequent species were Dicranum
177  scoparium, Leucobryum juniperoideum and Hypnum cupressiforme.

178 Main patterns in community composition and species richness reflected VPD variability (Fig. 4). While the
179 gradients in VPD and Ps, Were significantly related to the main patterns in community composition (VPD: R? =
180  0.37, p =0.001; Ps;: RZ2=0.34, p=0.001), the gradient in P4 was not (R? = 0.09, p =0.17). The number of
181 bryophyte species was higher in plots with low VVPD and declined with increasing VPD (GAM: explained deviance
182  D?=31.2 %, y? = 23.37, p = 0.0008).
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183 Figure 4: Nonmetric multidimensional scaling (NMDS) of the bryophyte community composition shoving main
184 gradients in bryophyte assemblages sampled at 38 temperate forest plots. Points show the positions of the individual
185 plots within the NMDS ordination space, and the vectors show the gradients in the average daily maximum VPD and
186 corresponding saturated and actual vapor pressures. The smooth surface and associated contours show the pattern in
187 species richness (number of species per plot) fitted into the NMDS ordination space with a generalized additive model.

188 Atmospheric VPD was a significant predictor of the community composition of forest bryophytes. The average
189 daily maximum VPD explained 10.95 % of the variation in species composition expressed with the Serensen index
190 (pseudo-F = 4.43, p = 0.001) and 13.52 % of the variation in species composition expressed with the Simpson
191 index (pseudo-F =5.63, p = 0.004).

192 Small liverworts (e.g. Riccardia multifida, Lophozia ventricosa) and hygrophilous bryophytes (e.g. Polytrichum
193  commune, Bazzania trilobata), as well as boreal (e.g. Dicranum majus) and (sub)oceanic (e.g. Mylia taylorii,
194  Plagiothecium undulatum) species preferred plots with low atmospheric VPD (Fig. 5). In contrast, mesic species
195 like Hypnum cupressiforme, Polytrichum formosum or Dicranum scoparium occurred also in plots with higher
196  atmospheric VPD.
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197 Figure 5: Occurrences of all recorded bryophyte species along the gradient of the average daily maximum VPD
198 measured at 38 forest plots. Plots are sorted from the lowest to highest VPD and each filled square shows the presence
199 of the focal species within the plot. While rare and azonally occurring species prefer sites with low VPD, mesic species
200 occur along the whole VPD gradient.

201 4. Discussion

202  Our findings have important implications both for theoretical and applied ecology. First, the variation in VPD over
203  thelandscape was controlled by maximum air temperature. Therefore, these two microclimatic variables are tightly
204  coupled at biologically relevant scales, and their effects are hard to disentangle with observational data. Maximum
205  temperatures were identified as a key driver of bryophyte and vascular plant species distribution in temperate
206  forests (Macek et al., 2019; Man et al., 2022). Unfortunately, these studies did not measure VPD. Considering our
207 results, the importance of maximum temperature does not necessarily stem from its direct effects on plant
208  ecophysiology, but more likely from strong temperature control of VPD variability over the landscape.
209 Nevertheless, this new hypothesis needs further testing.

210  Second, our results imply that it is possible to estimate VPD from local microclimate air temperature measurements
211 combined with non-local measurements of air relative humidity, for example from a nearby weather station. While
212 the general applicability of this approach should be further tested in various environmental settings and across
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213 different vegetation types, our findings suggest that local VPD can be reasonably estimated (Appendix B, Fig. B1).
214  This finding thus opens exciting possibilities for further research as local temperature measurements are

215 increasingly available all over the world (Lembrechts et al., 2020).

216 4.1 VPD variability across the landscape

217 Large spatial variability in atmospheric VPD structured forest bryophyte communities across the landscape.
218 Interestingly, VPD variation was driven by temperature-controlled Ps, while Pt was relatively constant across
219  the landscape. This finding is important, as the actual vapor pressure should also be variable across the landscape
220  (Johnston et al., 2025, Ogeé et al. 2024). However, our findings suggest that the local and spatially highly
221 heterogeneous processes like evaporation from soil and water surfaces and plant transpiration do not contribute
222 much to the landscape-scale variation in VPD.

223 Microclimate variation over the landscape, crucial for community ecology, is largely dictated by land-surface
224 topography (Dobrowski, 2011). Land-surface topography controls also maximum air temperatures in the forest
225  understory (Macek et al., 2019) and therefore spatial variability in saturation vapor pressure. However, we were
226 surprised that the highly localized processes like evapotranspiration did not contribute much to the spatial
227 variability in absolute air humidity despite our study area with extremely rugged topography and contrasting forest
228 vegetation types. Therefore, spatial variability in absolute air humidity seems to be determined mostly by processes
229 operating at much larger scales like atmospheric circulation and precipitation patterns (Campbell and Norman,
230 1998).

231 Given the growing recognition of VPD importance for many ecosystem processes, plant distribution, and
232 community assembly (Grossiord et al., 2020; Kopecky et al., 2024; Novick et al., 2024), the approach we
233 developed here to disentangle the contribution of saturated versus actual vapor pressure can provide new insights
234 into the drivers of VPD variability across spatial and temporal scales. So far, the knowledge of the relative
235 importance of saturated versus actual vapor pressure is limited, therefore it is difficult to compare our results with
236 other studies. Nevertheless, a comparison of the drivers of VPD variability across agricultural fields in Germany

237  supports our conclusion (Worlen et al., 1999).

238 4.2 VPD effects on bryophytes

239 Bryophytes inevitably lose water when exposed to the air with non-zero VVPD (Hinshiri and Proctor, 1971; Bushy
240  and Whitfield, 1978). At full turgor, bryophyte cells have osmotic potential rarely more negative than -2 MPa
241 (Proctor, 2000). An osmotic potential of -1.36 MPa is in equilibrium with air at 20 °C and 99% relative humidity
242 (i.e. VPD < 0.03 kPa). If the temperature remains at 20 °C, but the relative humidity drops to 90 %, the water
243 potential outside the bryophyte body decreases to -14 MPa (Proctor, 2000) and bryophytes start to lose water. To
244 maintain full turgor and normal cell function, bryophytes thus need free liquid water close to the cells. However,
245 this external water completely evaporates within 45-50 minutes if atmospheric VPD reaches 1.22 kPa (Leon-
246 Vargas et al., 2006). Once the external water evaporates, bryophyte cells rapidly lose turgor, metabolic activity
247 slows down, and carbon fixation decreases. In our study region, such favorable conditions without evaporative
248 stress and VVPD lower than 0.03 kPa occurred only 9 % of the measurement time.

249 In contrast to vascular plants, bryophytes tolerate desiccation and become metabolically inactive in the absence of
250 water (Proctor, 2000). When conditions improve, bryophytes quickly reactivate physiological processes such as

10
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251 respiration, photosynthesis, cell cycle, or normal cytoskeleton function (Proctor, Ligrone, et al., 2007; Proctor,
252 Oliver, et al., 2007). However, this reactivation requires a lot of energy, for example to produce specific repair
253  proteins (Oliver and Bewley, 1984; Zeng et al., 2002) or to maintain the integrity and normal function of cell
254 organelles and membranes (Platt et al., 1994). Prolonged periods without evaporative stress are therefore key for
255  bryophyte growth and long-term survival (Proctor, Oliver, et al., 2007).

256 Large VPD variability over the landscape creates fine-scaled mosaic of sites with widely different evaporative
257 stress and this environmental template structured bryophyte communities. Regionally rare species preferred sites
258 with low VPD. These species — otherwise typical for (sub)montane, boreal, or (sub)oceanic regions — are
259 approaching their distributional limits within our study area (Hill and Preston, 1998). For these species, sites with
260 low VPD serve as microclimatic refugia within an otherwise unsuitable landscape matrix. In contrast, widespread
261 mesic bryophytes occurred along the whole VPD gradient. Sites with low atmospheric VPD, hosting
262  simultaneously rare as well as widespread bryophytes, thus represent hotspots of bryophyte diversity in the
263 landscape.

264  With climate warming, areas with low VPD will likely shrink, and their bryophyte diversity will become more
265  vulnerable (Pardow and Lakatos, 2013). Moreover, the increasingly frequent and severe canopy disturbances will
266 likely increase understory temperatures and therefore also VPD (Wolf et al., 2021; Mali§ et al., 2023). Our results
267  suggest that such changes will reshuffle bryophyte communities, supporting widespread mesic bryophytes at the

268  expense of regionally rare species near their distributional limits.

269 4.3 Disentangling atmospheric VPD and temperature

270  The close coupling between VPD and maximum temperature across the landscape clearly shows the need — and
271 simultaneously the difficulty — of disentangling the influences of VPD and temperature on plant communities.
272 While temperature affects basic life functions of bryophytes like photosynthesis, respiration (Dilks and Proctor,
273 1975), and growth (Furness and Grime, 1982), bryophytes thrive in a wide range of temperatures — from less than
274 -30 °C (Dilks and Proctor, 1975) to over 40 °C in a dry state (Hearnshaw and Proctor, 1982). For most bryophytes,
275  the optimal growth temperature ranges from 12 to 25 °C (Vanderpoorten and Goffinet, 2009). However, many
276 bryophyte species grow even at temperatures around 5 °C (Dilks and Proctor, 1975), and some can even
277 photosynthesize at temperatures below 0 °C (Losch et al., 1983). Therefore, temperature is hardly a direct limiting
278 factor of bryophyte distribution and community composition in temperate regions.

279 Several studies of vascular plants have attempted to distinguish the independent effect of VPD from other
280 microclimatic factors affecting plant functioning and distribution (Eamus et al., 2013; Denham et al., 2021; Flo et
281 al., 2022; Fu et al., 2022; Kopecky et al., 2024), highlighting the critical importance of VPD (Novick et al., 2016;
282 Schonbeck et al., 2022). Unfortunately, no physiological studies addressed the independent effects of VPD
283  on bryophytes, despite clear indications that VPD plays a key role (Busby et al., 1978; Sonnleitner et al., 2009).
284  So far, studies of bryophyte physiology concentrated on desiccation tolerance (Morales-Sanchez et al., 2022).
285 While desiccation tolerance is an adaptation to cope with the external lack of water, the ultimate driver of
286  desiccation is atmospheric VPD. A deeper focus on atmospheric VPD can therefore bring a new insight into

287  bryophyte ecology and distribution.

11
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288 5. Conclusions

289  Atmospheric VVPD controls community composition and richness of bryophyte assemblages in temperate forest
290  understory. Even across the landscape with extremely rugged terrain, spatial variability in atmospheric VPD was
291  controlled by temperature-dependent saturated vapor pressure. Maximum air temperature and VVPD are thus tightly
292 coupled at biologically relevant scales and their effects are hard to disentangle. Nevertheless, both ecological
293  and physiological studies suggest that bryophytes in temperate zone are not directly limited by temperature (Dilks
294 and Proctor, 1975; Furness and Grime, 1982) but rather by evaporative stress represented by VPD (Busby et al.,
295 1978; Dilks and Proctor, 1979). With climate warming, the tight coupling between VVPD and local air temperature
296  will cause nonlinear increases in VPD-driven evaporative stress, which will subsequently reshuffle bryophyte
297 community composition and decrease species richness. Especially vulnerable will be azonally occurring bryophyte
298  species concentrated in microclimatic refugia with low VPD.

299  Appendix A

300  VPD variability over the summer season

101 [P.... corresponding to daily maximum VPD
[BIP... corresponding to daily maximum VPD
.daily maximum VPD

Pressure (kPa)
N

June July August September

301 Figure Al: Daily values of maximum vapor pressure deficit (VPD) and corresponding values of saturated (Psat)
302 and actual (Pair) vapor pressures, averaged over 38 permanent vegetation plots during June-August 2022.
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303 Figure A2: Spatial variability of VPD (black circles) is tightly coupled with the spatial variability in Psat (orange squares)
304 but not with Pair (blue triangles). Each data point shows the standard deviation of the daily value measured at 38 study
305 sites. Marginal boxplots summarize spatial variability (daily standard deviations) during the growing season
306 (June-August 2022).
307 Appendix B
308  VPD estimate from in-situ air temperature and regional air humidity
309 Based on our results, we speculated that local atmospheric VPD can be reasonably estimated using the in-situ air
310 temperature measurements paired with relative air humidity measurements representative for the whole region
311  (and therefore the same for all plots situated within that region).
312  To explore this idea, we estimated the average daily maximum atmospheric VPD using in-situ measured air
313 temperature (HOBO U23 ProV2 dataloggers in 1.5 m height) and relative air humidity measured in the Tokan
314 weather station located in the study area (Fig. 1).
315  While the measured and estimated VVPD were closely correlated (Pearson r = 0.98), estimated VVPD tended to be
316  higher than in-situ measured VPD (Fig. B1).
317  Therefore, we conclude that the relative position of the site on the VVPD gradient can be reasonably estimated from
318 in-situ microclimate temperature measurements paired with regional relative air humidity measurements.
319 However, this approach does not provide a reliable estimate of local atmospheric VPD, especially on sites with
320 locally higher air humidity.
321
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322
323
324
325
326

327

328

329
330

EGUsphere\

estimated VPD

2

in-situ measured VPD

Figure B1: Relationship between in-situ measured average daily maximum VPD and average daily maximum VPD
estimated from in-situ measured air temperature and relative air humidity measured in regional weather station (June-
August 2022). While the measured and estimated VVPD are closely correlated (Pearson r = 0.98), estimated VPD tends
to be higher than in-situ measured VPD, likely because of locally higher air humidity in topographically sheltered sites
near valley bottoms.

Appendix C

List of bryophyte species, their occurrence and biogeographical affinity

Table C1: Complete species list of bryophyte species recorded at 38 study plots. Biogeographical categories follow Hill
and Preston (1998).

Species name Occurence Taxonomic Major biome Eastern limit
group
1 Dicranum scoparium 32  moss Wide-boreal Circumpolar
2 Leucobryum 26 moss Temperate European
juniperoideum
3 Hypnum cupressiforme 24 moss Wide-temperate Circumpolar
4 Tetraphis pellucida 21  moss Boreo-temperate Circumpolar
5 Bazzania trilobata 18 liverwort Temperate Suboceanic
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24

25
26
27
28

29
30
31

32
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34
35
36
37
38
39

Polytrichum formosum
Lophocolea heterophylla

Plagiothecium
laetum/curvifolium

Orthodontium lineare

Plagiothecium
undulatum

Pleurozium schreberi
Sphagnum
girgensohnii/capillifolium

Dicranodontium
denudatum

Campylopus flexuosus
Lepidozia reptans
Lophocolea bidentata
Pohlia nutans

Mnium hornum
Calypogeia
integristipula
Herzogiella seligeri

Brachythecium
rutabulum

Calypogeia mulleriana
Dicranella heteromalla

Orthodicranum
montanum

Mylia taylorii
Atrichum undulatum
Dicranum majus

Odontoschisma
denudatum

Pellia epiphylla
Polytrichum commune
Ptilidium ciliare

Cephalozia bicuspidata
Dicranoweisia cirrata
Lophozia ventricosa
Plagiomnium affine
Plagiomnium undulatum
Rhabdoweisia fugax
Riccardia multifida
Scapania nemorea

17
15
15

13
11

10
10

o ~N O 0 0 oo
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liverwort
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liverwort
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moss
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liverwort
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liverwort
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Boreo-arctic
Montane/Boreo-
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Boreal-montane

Temperate
Boreo-temperate
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Wide-boreal
Temperate
Boreo-temperate

Boreo-temperate
Temperate

Boreo-temperate
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Boreal-montane
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Boreo-temperate
Boreo-temperate
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Wide-boreal

Boreo-arctic
Montane
Boreo-temperate

Temperate
Boreo-temperate
Temperate
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Boreal-montane
Boreo-temperate
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EGUsphere\

Circumpolar
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Circumpolar/European

European
Suboceanic

Circumpolar
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Suboceanic
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331 Data availability. The data supporting the findings of this study are currently provided for peer review on GitHub

332 public repository (https://doi.org/10.5281/zenodo.14989898).
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